Human Action Recognition Based on Oriented Motion Salient Regions

نویسندگان

  • Baoxin Wu
  • Shuang Yang
  • Chunfeng Yuan
  • Weiming Hu
  • Fangshi Wang
چکیده

Motion is the most informative cue for human action recognition. Regions with high motion saliency indicate where actions occur and contain visual information that is most relevant to actions. In this paper, we propose a novel approach for human action recognition based on oriented motion salient regions (OMSRs). Firstly, we apply a bank of 3D Gabor filters and an opponent inhibition operator to detect OMSRs of videos, each of which corresponds to a specific motion direction. Then, a new low-level feature, named as oriented motion salient descriptor (OMSD), is proposed to describe the obtained OMSRs through the statistics of the texture in the regions. Next, we utilize the obtained OMSDs to explore the oriented characteristics of action classes and generate a set of class-specific oriented attributes (CSOAs) for each class. These CSOAs provide a compact and discriminative middle-level representation for human actions. Finally, an SVM classifier is utilized for human action classification and a new compatibility function is devised for measuring how well a given action matches to the CSOAs of a certain class. We test the proposed approach on four public datasets and the experimental results validate the effectiveness of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced-Reference Image Quality Assessment based on saliency region extraction

In this paper, a novel saliency theory based RR-IQA metric is introduced. As the human visual system is sensitive to the salient region, evaluating the image quality based on the salient region could increase the accuracy of the algorithm. In order to extract the salient regions, we use blob decomposition (BD) tool as a texture component descriptor. A new method for blob decomposition is propos...

متن کامل

Perception-oriented video saliency detection via spatio-temporal attention analysis

Human visual system actively seeks salient regions and movements in video sequences to reduce the search effort. Computational visual saliency detection model provides important information for semantic understanding in many real world applications. In this paper, we propose a novel perception-oriented video saliency detection model to detect the attended regions for both interesting objects an...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Visual Attention Based Salient Object Motion Detection in Spatio Temporal Volume

260 Abstract—We present different visual attention based salient object detection methods for effectively detecting object in structured environment. Human brains pay more attention towards some important part of image sequences. Those attentions are extraordinary fast and realistic one. Computation of such salient object detection like intelligence behavior is very difficult task for implement...

متن کامل

Scale Saliency: Applications in Visual Matching, Tracking and View-Based Object Recognition

In this paper, we introduce a novel technique for image matching and feature-based tracking. The technique is based on the idea of using the Scale-Saliency algorithm to pick a sparse number of ‘interesting’ or ‘salient’ features. Feature vectors for each of the salient regions are generated and used in the matching process. Due to the nature of the sparse representation of feature vectors gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014